Solutions
Get detailed explanations to advanced GMAT questions.
Question
If |x| > 3, which of the following must be true?
I. x > 3
II. x^2 > 9
III. |x-1|>2
Option A:
I only
Option B:
II only
Option C:
I and II only
Option D:
II and III only
Option E:
I, II, and III
Difficulty Level
MediumSolution
Option D is the correct answer.
Option Analysis
Given, |x| > 3, which means either x>3 or x<-3
Now check the statements
I. x > 3 – not always true as x can be smaller than -3.Thus option A,C & E is ruled out. Only B & D are left.
II. X^2 > 9 – Always true for x>3 or x<-3 .To check – if x = 4,5,6,7…. or -4,-5,-6,-7, x^2>9
III. |x-1|>2, which means (x-1)>2 —> x>3 (if x-1>0) – True it also means (x-1)<-2—- >x<-1
(if x-1<0) X<-1 satisfies x<-3.
Thus true Both II and III, is true
Related Questions
- If r is an integer, what is the value of 3^(2r)/ 27^(r-1)?
- What is the value of expression x(x-2)^3 when x = -1?
- The outside of the rectangular box represented in the figure above is to be decorated by attaching pieces of…
- Is the product of a positive integer and a negative integer is less than -10 ?
- Color X ink is created by blending red, blue, green and yellow inks in the ratio 6:5:2:2. What is the number…